Real-Time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments
نویسندگان
چکیده
Supporting real-time jobs on MapReduce systems is particularly challenging due to the heterogeneity of the environment, the load imbalance caused by skewed data blocks, as well as real-time response demands imposed by the applications. In this paper we describe our approach for scheduling real-time, skewed MapReduce jobs in heterogeneous systems. Our approach comprises the following components: (i) a distributed scheduling algorithm for scheduling real-time MapReduce jobs endto-end, and (ii) techniques for handling the data skewness that frequently arises in MapReduce environments and can lead to significant load imbalances. Our detailed experimental results using real datasets on a truly heterogeneous environment, Planetlab, illustrate that our approach is practical, exhibits good performance and consistently outperforms its competitors.
منابع مشابه
Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملA Throughput Driven Task Scheduler for Batch Jobs in Shared MapReduce Environments
MapReduce is one of the most popular parallel data processing systems, and it has been widely used in many fields. As one of the most important techniques in MapReduce, task scheduling strategy is directly related to the system performance. However, in multi-user shared MapReduce environments, the existing task scheduling algorithms cannot provide high system throughput when processing batch jo...
متن کاملReal-Time MapReduce Scheduling
In this paper, we explore the feasibility of enabling the scheduling of mixed hard and soft real-time MapReduce applications. We first present an experimental evaluation of the popular Hadoop MapReduce middleware on the Amazon EC2 cloud. Our evaluation reveals tradeoffs between overall system throughput and execution time predictability, as well as highlights a number of factors affecting real-...
متن کاملOn Optimal Budget-Driven Scheduling Algorithms for MapReduce Jobs in the Heterogeneous Cloud
In this paper, we consider task-level scheduling algorithms with res-pect to budget and deadline constraints for a bag of MapReduce jobs on a set of provisioned heterogeneous (virtual) machines in cloud platforms. Heterogeneity is manifested in the ”pay-as-you-go” charging model we use, where service machines with different performance have different service rates. We organize the bag of jobs a...
متن کاملSolving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs
Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...
متن کامل